Dersin Adı Dersin Seviyesi Dersin Kodu Dersin Tipi Dersin Dönemi Yerel Kredi AKTS Kredisi Ders Bilgileri
BULANIK ÇIKARIM SİSTEMLERİ-I Birinci Düzey BMM 619 1 7.50 7.50 Yazdır
   
Dersin Tanımı
Ön Koşul Dersleri -
Eğitimin Dili Türkçe
Koordinatör
Dersi Veren Öğretim Eleman(lar)ı PROF. DR. MEHMET EMİN YÜKSEL
Yardımcı Öğretim Eleman(lar)ı -
Dersin Veriliş Şekli Yüz Yüze
Dersin Amacı Bulanık mantığa giriş bulanık küme teorisinin anlaşılması, bulanık çıkarım sistemlerinin anlaşılması
Dersin Tanımı Bulanık çıkarım sistemlerinin mühendislikteki uygulmalarının öğretilmesi

Dersin İçeriği
1 Giriş
2 Bulanık Mantığın Temel Kavramları
3 Bulanık Kümeler
4 Bulanık İlişki, Bulanık Grafikler ve Bulanık Aritmetik
5 Bulanık Kurallar eğer-öyleyse
6 Mamdani Tipi Bulanık Çıkarım
7 Sugeno Tip Bulanık Çıkarım
8 Bulanık Mantık Uygulamaları
9 Örüntü Tanıma
10 Yapay sinir ağları ve bulanık mantık
11 Kontrol Sistemleri
12 Karar Verme Sistemleri
13 Adaptif Öğrenme
14 ANFİS
15
16
17
18
19
20

Dersin Öğrenme Çıktıları
1 Matematik, fen ve mühendislik bilgilerini uygulama becerisi
2 İhtiyaçları karşılayacak sistem tasarımı
3 Mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi
4 Yazılım Geliştirilmesi
5 Literatür takibi yapabilme
6 Bulanık Çıkarım sistemlerinin mühendislik problemlerine uygulanması
7
8
9
10

*Dersin Program Yeterliliklerine Katkı Seviyesi
1 Matematik, fen bilimleri ve ilgili mühendislik disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilme becerisi.
2 Karmaşık mühendislik problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi.
3 Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi.
4 Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi.
5 Karmaşık mühendislik problemlerinin veya disipline özgü araştırma konularının incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi.
6 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi.
7 Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az bir yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.
9 Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk bilinci; mühendislik uygulamalarında kullanılan standartlar hakkında bilgi.
10 Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi.
11 Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Yıldızların sayısı 1’den (en az) 5’e (en fazla) kadar katkı seviyesini ifade eder

Planlanan Öğretim Faaliyetleri, Öğretme Metodları ve AKTS İş Yükü
  Sayısı Süresi (saat) Sayı*Süre (saat)
Yüz yüze eğitim 14 3 42
Sınıf dışı ders çalışma süresi (ön çalışma, pekiştirme) 14 3 42
Ödevler 14 1 14
Sunum / Seminer hazırlama 0 0 0
Kısa sınavlar 0 0 0
Ara sınavlara hazırlık 1 10 10
Ara sınavlar 1 2 2
Proje (Yarıyıl ödevi) 0 0 0
Laboratuvar 0 0 0
Arazi çalışması 15 2 30
Yarıyıl sonu sınavına hazırlık 1 10 10
Yarıyıl sonu sınavı 1 2 2
Araştırma 30 1 30
Toplam iş yükü     182
AKTS     7.50

Değerlendirme yöntemleri ve kriterler
Yarıyıl içi değerlendirme Sayısı Katkı Yüzdesi
Ara sınav 1 40
Kısa sınav 0 0
Ödev 0 0
Yarıyıl içi toplam   40
Yarıyıl içi değerlendirmelerin başarıya katkı oranı   40
Yarıyıl sonu sınavının başarıya katkı oranı   60
Genel toplam   100

Önerilen Veya Zorunlu Okuma Materyalleri
Ders kitabı Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence by Jyh-Shing Roger Jang, Chuen-Tsai Sun and Eiji Mizutani
Yardımcı Kaynaklar Fuzzy Logic with Engineering Applications, Third Edition by Timothy J. Ross

Ders İle İlgili Dosyalar