Ön koşul dersleri
|
None
|
Eğitimin dili
|
English
|
Koordinatör
|
DR. ÖĞR. ÜYESİ KEVSER ŞAHİN TIRAŞ
|
Dersi veren öğretim eleman(lar)ı
|
DR. ÖĞR. ÜYESİ KEVSER ŞAHİN TIRAŞ
|
Yardımcı öğretim eleman(lar)ı
|
-
|
Dersin veriliş şekli
|
Face to face.
|
Dersin amacı
|
To introdude the basic mathematical methods used in Phsics.
|
Dersin tanımı
|
Determinants and Matrices, Vector Analysis, Vector Spaces, Eigenvalue Problems, Complex Variable Theory
|
1- |
MATHEMATICAL PRELIMINARIES: infinite series, series of functions, Binomial theoerm, mathematical induction, Operations of Series Expansions of Functions, Some Important Series
|
2- |
MATHEMATICAL PRELIMINARIES: Vectors, Complex Numbers and Functions, Derivatives and Extrema, Evaluation of Integrals, Dirac Delta Functions
|
3- |
DETERMINANTS AND MATRICES
|
4- |
VECTOR ANALYSIS: Review of Basics Properties, Vector in 3 ‐ D Spaces, Coordinate Transformations, Rotations in R3, Differential Vector Operators
|
5- |
VECTOR ANALYSIS: Vector Integrations, Integral Theorems, Potential Theory, Curvilinear Coordinates
|
6- |
VECTOR SPACES: Vector in Function Spaces, Gram ‐ Schmidt Orthogonalization, Operators, Self‐Adjoint Operators,
|
7- |
MİDTERM EXAM
|
8- |
VECTOR SPACES: Unitary Operators, Transformations of Operators, Invariants
|
9- |
EIGENVALUE PROBLEMS: Eigenvalue Equations, Matrix Eigenvalue Problems
|
10- |
EIGENVALUE PROBLEMS: Hermitian Eigenvalue Problems, Hermitian Matrix Diagonalization, Normal Matrices
|
11- |
COMPLEX VARIABLE THEORY: Complex Variables and Functions, Cauchy – Riemann Conditions, Cauchy’s Integral Theorem
|
12- |
COMPLEX VARIABLE THEORY: Cauchy’s Integral Formula, Laurent Expansion, Singularities
|
13- |
COMPLEX VARIABLE THEORY: Calculus of Residues, Evaluation of Definite Integrals
|
14- |
Problem Session
|
15- |
FİNAL EXAM
|
16- |
|
17- |
|
18- |
|
19- |
|
20- |
|
1- |
To learn vactor analysis
|
2- |
To learn determinants and matrices
|
3- |
To learn infinite series
|
4- |
To learn functions of a complex variable
|
5- |
To learn Cauchy’s integral theorem, calculus of residues
|
6- |
To learn the method of steepest descents
|
7- |
|
8- |
|
9- |
|
10- |
|
*Dersin program yeterliliklerine katkı seviyesi
|
1- |
To develop and deepen current and advanced knowledge in the field at the level of expertise with original thought and research, based on master''s degree qualifications, and to reach original definitions that will bring innovation to science.
|
|
2- |
To understand the interaction between disciplines related to the field of physics; Achieving original results by using knowledge that requires expertise in analyzing, synthesizing and evaluating new and complex ideas
|
|
3- |
To be able to access new scientific information in the field of physics and to gain high-level skills in research methods related to the field.
|
|
4- |
To be able to develop a new scientific method in the field of physics or to apply a known method to a different problem.
|
|
5- |
Being able to research, comprehend, design, adapt and apply an original subject
|
|
6- |
Ability to question, synthesize and evaluate new and complex ideas
|
|
7- |
Publishing original studies in peer-reviewed journals
|
|
8- |
To be able to develop original ideas and methods related to the field and interdisciplinary by using high-level mental processes such as creative and questioning thinking, problem solving and decision making.
|
|
9- |
Ability to present original views effectively within a community of experts
|
|
10- |
Being able to communicate and discuss at an advanced level in written, oral and visual language in at least one foreign language.
|
|
11- |
To contribute to the process of becoming an information society by introducing technological advances in the academic and professional context
|
|
12- |
|
|
13- |
|
|
14- |
|
|
15- |
|
|
16- |
|
|
17- |
|
|
18- |
|
|
19- |
|
|
20- |
|
|
21- |
|
|
22- |
|
|
23- |
|
|
24- |
|
|
25- |
|
|
26- |
|
|
27- |
|
|
28- |
|
|
29- |
|
|
30- |
|
|
31- |
|
|
32- |
|
|
33- |
|
|
34- |
|
|
35- |
|
|
36- |
|
|
37- |
|
|
38- |
|
|
39- |
|
|
40- |
|
|
41- |
|
|
42- |
|
|
43- |
|
|
44- |
|
|
45- |
|
|
Yıldızların sayısı 1’den (en az) 5’e (en fazla) kadar katkı seviyesini ifade eder |
Planlanan öğretim faaliyetleri, öğretme metodları ve AKTS iş yükü
|
|
Sayısı
|
Süresi (saat)
|
Sayı*Süre (saat)
|
Yüz yüze eğitim
|
14
|
3
|
42
|
Sınıf dışı ders çalışma süresi (ön çalışma, pekiştirme)
|
14
|
5
|
70
|
Ödevler
|
8
|
4
|
32
|
Sunum / Seminer hazırlama
|
0
|
0
|
0
|
Kısa sınavlar
|
0
|
0
|
0
|
Ara sınavlara hazırlık
|
1
|
16
|
16
|
Ara sınavlar
|
1
|
2
|
2
|
Proje (Yarıyıl ödevi)
|
0
|
0
|
0
|
Laboratuvar
|
0
|
0
|
0
|
Arazi çalışması
|
0
|
0
|
0
|
Yarıyıl sonu sınavına hazırlık
|
1
|
20
|
20
|
Yarıyıl sonu sınavı
|
1
|
2
|
2
|
Araştırma
|
0
|
0
|
0
|
Toplam iş yükü
|
|
|
184
|
AKTS
|
|
|
7.50
|
Değerlendirme yöntemleri ve kriterler
|
Yarıyıl içi değerlendirme
|
Sayısı
|
Katkı Yüzdesi
|
Ara sınav
|
1
|
40
|
Kısa sınav
|
0
|
0
|
Ödev
|
8
|
60
|
Yarıyıl içi toplam
|
|
100
|
Yarıyıl içi değerlendirmelerin başarıya katkı oranı
|
|
70
|
Yarıyıl sonu sınavının başarıya katkı oranı
|
|
30
|
Genel toplam
|
|
100
|
Önerilen veya zorunlu okuma materyalleri
|
Ders kitabı
|
Mathematical Methods for Physicsts (Arfken & Weber)
|
Yardımcı Kaynaklar
|
|
|