Giriş | English

Yüksek Lisans > Sosyal Bilimler Enstitüsü > Kamu Hukuku (yüksek Lisans) > MATHEMATICAL METHODS IN PHYSICS- I
 
Dersin adı Dersin seviyesi Dersin kodu Dersin tipi Dersin dönemi Yerel kredi AKTS kredisi Ders bilgileri
MATHEMATICAL METHODS IN PHYSICS- I İkinci düzey PHYS507 1 7.50 7.50 Yazdır
   
Dersin tanımı
Ön koşul dersleri None
Eğitimin dili English
Koordinatör DR. ÖĞR. ÜYESİ KEVSER ŞAHİN TIRAŞ
Dersi veren öğretim eleman(lar)ı DR. ÖĞR. ÜYESİ KEVSER ŞAHİN TIRAŞ
Yardımcı öğretim eleman(lar)ı -
Dersin veriliş şekli Face to face.
Dersin amacı To introdude the basic mathematical methods used in Phsics.
Dersin tanımı Determinants and Matrices, Vector Analysis, Vector Spaces, Eigenvalue Problems, Complex Variable Theory

Dersin içeriği
1- MATHEMATICAL PRELIMINARIES: infinite series, series of functions, Binomial theoerm, mathematical induction, Operations of Series Expansions of Functions, Some Important Series
2- MATHEMATICAL PRELIMINARIES: Vectors, Complex Numbers and Functions, Derivatives and Extrema, Evaluation of Integrals, Dirac Delta Functions
3- DETERMINANTS AND MATRICES
4- VECTOR ANALYSIS: Review of Basics Properties, Vector in 3 ‐ D Spaces, Coordinate Transformations, Rotations in R3, Differential Vector Operators
5- VECTOR ANALYSIS: Vector Integrations, Integral Theorems, Potential Theory, Curvilinear Coordinates
6- VECTOR SPACES: Vector in Function Spaces, Gram ‐ Schmidt Orthogonalization, Operators, Self‐Adjoint Operators,
7- MİDTERM EXAM
8- VECTOR SPACES: Unitary Operators, Transformations of Operators, Invariants
9- EIGENVALUE PROBLEMS: Eigenvalue Equations, Matrix Eigenvalue Problems
10- EIGENVALUE PROBLEMS: Hermitian Eigenvalue Problems, Hermitian Matrix Diagonalization, Normal Matrices
11- COMPLEX VARIABLE THEORY: Complex Variables and Functions, Cauchy – Riemann Conditions, Cauchy’s Integral Theorem
12- COMPLEX VARIABLE THEORY: Cauchy’s Integral Formula, Laurent Expansion, Singularities
13- COMPLEX VARIABLE THEORY: Calculus of Residues, Evaluation of Definite Integrals
14- Problem Session
15- FİNAL EXAM
16-
17-
18-
19-
20-

Dersin öğrenme çıktıları
1- To learn vactor analysis
2- To learn determinants and matrices
3- To learn infinite series
4- To learn functions of a complex variable
5- To learn Cauchy’s integral theorem, calculus of residues
6- To learn the method of steepest descents
7-
8-
9-
10-

*Dersin program yeterliliklerine katkı seviyesi
1- seçilen derslerle ilgili ayrıntılı bilgi sahibi olunmaktadır.
2- Mezunlar Uzman Ünvanı elde etmektedir.
3- Mesleklerine olumlu katkı sağlamaktadır.
4-
5-
6-
7-
8-
9-
10-
11-
12-
13-
14-
15-
16-
17-
18-
19-
20-
21-
22-
23-
24-
25-
26-
27-
28-
29-
30-
31-
32-
33-
34-
35-
36-
37-
38-
39-
40-
41-
42-
43-
44-
45-
Yıldızların sayısı 1’den (en az) 5’e (en fazla) kadar katkı seviyesini ifade eder

Planlanan öğretim faaliyetleri, öğretme metodları ve AKTS iş yükü
  Sayısı Süresi (saat) Sayı*Süre (saat)
Yüz yüze eğitim 14 3 42
Sınıf dışı ders çalışma süresi (ön çalışma, pekiştirme) 14 5 70
Ödevler 8 4 32
Sunum / Seminer hazırlama 0 0 0
Kısa sınavlar 0 0 0
Ara sınavlara hazırlık 1 16 16
Ara sınavlar 1 2 2
Proje (Yarıyıl ödevi) 0 0 0
Laboratuvar 0 0 0
Arazi çalışması 0 0 0
Yarıyıl sonu sınavına hazırlık 1 20 20
Yarıyıl sonu sınavı 1 2 2
Araştırma 0 0 0
Toplam iş yükü     184
AKTS     7.50

Değerlendirme yöntemleri ve kriterler
Yarıyıl içi değerlendirme Sayısı Katkı Yüzdesi
Ara sınav 1 40
Kısa sınav 0 0
Ödev 8 60
Yarıyıl içi toplam   100
Yarıyıl içi değerlendirmelerin başarıya katkı oranı   70
Yarıyıl sonu sınavının başarıya katkı oranı   30
Genel toplam   100

Önerilen veya zorunlu okuma materyalleri
Ders kitabı Mathematical Methods for Physicsts (Arfken & Weber)
Yardımcı Kaynaklar

Ders ile ilgili dosyalar