Giriş | English

Doktora > Fen Bilimleri Enstitüsü > İnşaat Mühendisliği (doktora) > YAPAY SİNİR AĞLARI- I
 
Dersin adı Dersin seviyesi Dersin kodu Dersin tipi Dersin dönemi Yerel kredi AKTS kredisi Ders bilgileri
YAPAY SİNİR AĞLARI- I Üçüncü düzey BİM 501 1 7.50 7.50 Yazdır
   
Dersin tanımı
Ön koşul dersleri Herhangi bir ön koşul yok
Eğitimin dili Türkçe
Koordinatör PROF. DR. ALPER BAŞTÜRK
Dersi veren öğretim eleman(lar)ı DOÇ. DR. ALPER BAŞTÜRK
Yardımcı öğretim eleman(lar)ı --
Dersin veriliş şekli Yüz yüze
Dersin amacı Yapay sinir ağları (YSA), beynin belirli bir işi veya fonksiyonu gerçekleştirme yöntemini/yolunu modellemek için tasarlanan yapılardır. Bu ders, yapay sinir ağları ile ilgili temel bilgiler verir ve uygulama örnekleri sunar.
Dersin tanımı Yapay sinir ağları (YSA), beynin belirli bir işi veya fonksiyonu gerçekleştirme yöntemini/yolunu modellemek için tasarlanan yapılardır. Bu ders, yapay sinir ağları ile ilgili temel bilgiler verir ve uygulama örnekleri sunar.

Dersin içeriği
1- Beynin yapısı, biyolojik ağlar ve sinir sistemi hakkında bilgi
2- Yapay sinir sistemleri: Sinirsel hesaplama, YSA'ların gelişim tarihi. YSA'ların temel kavramları ve modelleri - 1
3- Yapay sinir sistemleri: Sinirsel hesaplama, YSA'ların gelişim tarihi. YSA'ların temel kavramları ve modelleri - 2
4- YSA modelleri, sinirsel süreçleme.
5- Öğrenme ve uyum, sinirağı öğrenme kuralları - 1
6- Öğrenme ve uyum, sinirağı öğrenme kuralları - 2
7- Tek-katmanlı sinir sınıflayıcılar
8- Vize
9- Tek-katmanlı geri beslemeli ağlar
10- Çok katmanlı ileri beslemeli ağlar - 1
11- Çok katmanlı ileri beslemeli ağlar - 2
12- Sinir algoritmaları ve sistemlerinin uygulamaları. Sinir ağlarının gerçeklenmesi - 1
13- Sinir algoritmaları ve sistemlerinin uygulamaları. Sinir ağlarının gerçeklenmesi - 2
14- Matlab uygulamaları
15-
16-
17-
18-
19-
20-

Dersin öğrenme çıktıları
1- YSA ile ilgili temelleri kavramak
2- Yapay sinir ağı yapıları
3- YSA öğrenme algoritmaları
4- YSA tasarımında dikkat edilmesi gereken hususlar
5- YSA uygulama alanları
6- --
7- --
8- --
9- --
10- --

*Dersin program yeterliliklerine katkı seviyesi
1- Matematik, fen ve Mühendislik bilgilerini uygulama becerisi
2- Deney tasarlama ve yapma ile deney sonuçlarını yorumlama becerisi
3- İstenen gereksinimleri karşılayacak biçimde bir sistemi, parçayı veya süreci tasarımlama
4- Disiplinler arası takımlarda çalışabilme becerisi
5- Mühendislik problemleri tanımlama, formüle etme ve çözme becerisi
6- Mesleki ve etik sorumluluk bilinci
7- İngilizce ve Türkçe etkin iletişim kurma becerisi
8- Mühendislik çözümlerinin evrensel ve toplumsal boyutlarda etkinliklerini anlamak için gerekli genişlikte eğitim
9- Yaşam boyu öğrenmenin gerekliliği bilinci
10- Çağın sorunları hakkında bilgi
11- Mühendislik uygulamaları için gerekli teknikleri, yetenekleri ve modern araçları kullanma becerisi
12-
13-
14-
15-
16-
17-
18-
19-
20-
21-
22-
23-
24-
25-
26-
27-
28-
29-
30-
31-
32-
33-
34-
35-
36-
37-
38-
39-
40-
41-
42-
43-
44-
45-
Yıldızların sayısı 1’den (en az) 5’e (en fazla) kadar katkı seviyesini ifade eder

Planlanan öğretim faaliyetleri, öğretme metodları ve AKTS iş yükü
  Sayısı Süresi (saat) Sayı*Süre (saat)
Yüz yüze eğitim 14 3 42
Sınıf dışı ders çalışma süresi (ön çalışma, pekiştirme) 14 2 28
Ödevler 7 5 35
Sunum / Seminer hazırlama 7 1 7
Kısa sınavlar 0 0 0
Ara sınavlara hazırlık 1 20 20
Ara sınavlar 1 2 2
Proje (Yarıyıl ödevi) 0 0 0
Laboratuvar 0 0 0
Arazi çalışması 0 0 0
Yarıyıl sonu sınavına hazırlık 1 20 20
Yarıyıl sonu sınavı 1 2 2
Araştırma 7 5 35
Toplam iş yükü     191
AKTS     7.50

Değerlendirme yöntemleri ve kriterler
Yarıyıl içi değerlendirme Sayısı Katkı Yüzdesi
Ara sınav 1 65
Kısa sınav 7 35
Ödev 0 0
Yarıyıl içi toplam   100
Yarıyıl içi değerlendirmelerin başarıya katkı oranı   40
Yarıyıl sonu sınavının başarıya katkı oranı   60
Genel toplam   100

Önerilen veya zorunlu okuma materyalleri
Ders kitabı S. Haykin. "Neural Networks: A Comprehensive Foundation", (2nd ed.), Prentice Hall PTR, Upper Saddle River, NJ, USA, 2008.
Yardımcı Kaynaklar E. Öztemel, "Yapay Sinir Ağları", Papatya Yayıncılık, 2008.

Ders ile ilgili dosyalar